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Control Structure

SECTION I — ABSTRACT

The purpose of this paper is to discuss some organizational aspects of programs using the actor

mod/ofXp^tion. in S.E paper we present an approach to^^^SSiX^i
society of communicating knowledge-based problem-solving experts. In turn each of he ex perts can be

viewed as a society that can be further decomposed in the same way unt.l the prim ,t ve actors of the

system are reached. We are investigating the nature of the cnmmunicat.on mecha s n f

effective problem-solving by a society of experts and the convenuons of discourse
i

that make this

possble In this way we hope eventually to develop a framework adequate f- the d,scu ion rfttj

central issues of problem-solving involving parallel versus serial processing and centrahzation versus

decentralization of control and information storage.

This paper demonstrates how actor message passing can be used to""^i^J^S
as patterns of passing messages in serial processing. This paper ,s\P^™ r« m%^™
treat issues of parallelism and communication within the frame*ork established here The a^ t0

analvze or synthesize any kind of control structure as a pattern of passing messages among the members

oTK^SSL an'important tool for understanding control structure, ™™^' ĥ °*
able to characterize various control structures in common use by societies in^terms o

'^ ^ ^J*
messages. This paper makes a small step in this direction by showing how to characterize familiar

control structures such as iteration and recursion in these terms.

/"*\

.
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SECTION II ...-- METHODOLOGY

111 — Modeling an Intelligent Person

Newell [1962] characterized what has become the conventional metaphor for computer problem
solving as follows: "The problem solver should be a tingle personality, wandering over a goal net much a*
an explorer wanders over the countryside, having a single context and taking it with him wherever he
goes." Working within this paradigm, authors of problem solving programs have often relied on
introspection as to methods that they would personally use to accomplish the task. Excellent scientific

work has been done working within this metaphor. Some of the work has taken the form of writing a
program to perform a task which requires a high degree of problem-solving ability in a human. Other
work has attempted to model how an individual human actually performs a simple task at an
information processing level.

Research in any scientific field is carried out within the framework of underlying theories. A
large portion of the research that has been done in the field of Artificial Intelligence has taken the
modeling of an artificial human as its implicit goal. An early form of this modelling paradigm was the
goal of constructing devices which would pass the "Turing Test" By this test a device is intelligent If it

cannot be distinguished from a human by interaction through a teletype. However, the "Turing Test"
view of the goal of artificial intelligence has been abused in recent years. Transcripts that appear to be
interactions with programs have been published that give a very misleading impression of the real

capabilities of the process that produced the transcripts.

II.2 — Modeling a Society of Experts

Reciprocal communication of a cooperative nature is the essential

intuitive criterion of a society.

Edward 0. Wilson in SOCIOBIOIQGY

We are investigating the problem solving model of a society of experts to supplement the model
of a single very intelligent human. We submit that this change in focus has several beneficial results.

It provides a better basis for naturally introducing parallelism into problem-solving since protocols of
individual people do not seem to exhibit much parallelism. The change in focus helps to make
mechanisms for the communication of knowledge more explicit. Psychologists have found it extremely
difficult to discover the communications that occur in the mind of an individual expert during problem
solving. Also the justifications for statements becomes more explicit since one expert will often demand
explicit justifications for the statements of another expert. It helps make the goal structures of
programs more explicit since experts can demand to know why they are being asked to work on a
particular task and how this task fits in with other tasks that are being pursued. Furthermore the
change should foster better specifications for tasks to be achieved so that appropriate experts can be
selected or synthesized.
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In these ways we hope to develop the communication mechanisms that are necessary to achieve

cooperation between expert modules for various micro-worlds in order to perform arger task!.which

call for the expertise of more than one micro-world. Our work is attempting to build on the analysis

that has been done by philosophers of science in recent years on the structure of the processes used by

scientific societies. ^particular the work of Kuhn and Popper and their followers proves us with a

large stock of problem-solving ideas. The long term goal is to construct ^^.J^J^V^
approximates the behavior of scientific societies. ThaHv tjie_u^^

model the wav scientist * mnstnict. commu nicate, test, and modlfxjjlggrigii

113 - The Actor Programming Methodology

We are developing methods to specify the behavior of actors (objects) in terms that are natural to

the semantics of the causal and incidental relationships' among the object,. ™J^ »««^W
to develop a transparent medium for constructing models in which the control structure emerges as_a

pattern of passing messages amone the ob jects_bejng modeled,

Towards that end, we are developing a programming methodology consisting of the following

activities:

Deciding on the natural kinds of actors (ob,iecisllo_MvjJnJhLsY ;

stem to be constructed.

Deciding for each kind of actor what kind of messages it shmnjLlgcgive,

Deciding for each Und of actor what it should do when it receives each kind of message.

Making the above decisions should constitute the design of an implementation^ Thus the data

structures and control structures of the implementation should be determ^^Sj£PJl^M *****

of being determined by the limitations of the programming language being used. Th s is not to say

tharthe
6
resulting implementation should be unstructured. Rather the structure of ^e irnplemenUtion

should develop naturally from the structure of the system being modeled working within the

conventions of discourse among actors

Actors are a local model of computation. There is no such thing as "action at a distance''nor is

there any "global state" of all actors in the universe. Actors interact on a purely local way by sending

,' messages to one another.

^usal relationships are determined by physicaY causation in activating computational events whereas

incidental relationships are determined by the local order of arrival of messages at their destinat.ons.

^s
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SECTION III — THE ACTOR MODEL

HU — Actors

The basic construct of our computation model is the ACTOR. The BEHAVIOR of each actor is

DEFINED by the relationships among the events which are caused by the actor.

At a more superficial and imprecise level, each actor may be thought of as having two aspects
which together realize the behavior which it manifests:

tne ACTION it should take when it is sent a message

its ACQUAINTANCES which is the finite collection of actors that it directly KNOWS
ABOUT.

We first discuss actors in terms of their physical arrangement because it makes the discussion
more concrete and familiar to most readers. Gradually the emphasis will change to a discussion of the
behaviors realized by actors.

Diagramatically we will represent a situation in which an actor A knows about an actor by
drawing a directed arc (which may be labeled for the convenience of the reader) from A to B.

/ B D

friend/ // Suppor t

father

\ door

/
A n c /->

A directly knows about B as "friend"

B directly knows about A as "support"

A directly knows about C as "n"

B directly knows about C as "father"

C directly knows about as "door"

Diagram of the acquaintances of actors A, B, C, and D
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The notation (acquaintances x)wi11 be used to denote

For example

Pag• 5

the immediate acquaintances of an actor k.

(acquaintances A)

(acquaintances B)

(acquaintances C)

(acquaintances D)

1CB}

{AC}

{D}

1}iacqu««»"»"»~—

'

A to

NoM tha, ,„« KNOWS ABOUT £^Z??$&\*£££«
"«2>» »»

rt
:rrrri»T-^MuT

s
uAL Aca,MNTANcEs.

example a list L with first element X and rest Y

first

rest

The actual

hash table:

pH,,,*, «p—*« - > «" - '"— * * "^ '"•• '
'"** "~* " ""

'

/"*s
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U < i

V
»

>

X:

Y:

1

H

U if

V
X:

Y:

LIWKEb LI5T VECTOR HASH TABLE
Diagram showing alternative physical realizations of L

Actors are straightforward to implement on conventional machines. We will mention a couple of
ways to do this in order to add concreteness to our discussion. Practical implementations are particularly

easy to construct using list-processing languages and micro-processors. Our implementation of actors in

LISP uses one cons pair for every actor. One component of the pair is a LISP procedure which
provides an entry point into the machine code necessary to implement the behavior of the actor when it

is sent a message. The other component of the pair is an ordered list of the acquaintances of the actor.

A similar representation could be used on a micro-processor (such as the CONS micro-processor of
Knight et. al.). A reference to an actor on a micro-processor would in general require one word of
memory which consisted of two sub-fields. One field would be used as an index into the micro-code
and the other field would be used to point to a vector of the acquaintances of the actor.

The reader should keep in mind that within the actor model of computation there is no way to
decompose an actor into its parts. An actor is defined by its behavior; not by its physical
representation!
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III 2 — Components; of the Actor Model

The actor message-passing model is being developed as four tightly related and mutually

supportive components:

1- A method for the rigorous specification of behaviors from various perspectives.

An important degree of flexibility available in actor semantics involves the ability to

carefully control the articulation of detail to be included in specifications. That is,

the constraints on the behavior of a system of actors can be specified in as much or

as little detail as is germane. Too much detail is distracting and impractical. Too

little detail fails to specify important aspects of the desired behavior. The wrong

kind of detail deflects attention down fruitless paths. Often the specifications need

to be very highly articulated for some crucial aspects of the desired behavior and

less so for other aspects. We are developing a methodology through which the

desired behavior of a system can be specified by axioms which characterize the

relationships among the events which must constitute the behavior of the system. At

the highest level these axioms are specifications of what is to be done rather than

how As more detailed constraints of the allowable events are gradually imposed,

the possible behaviors which will realize these constraints become more restricted

until one is uniquely determined. Conversely, in order to demonstrate that a set of

specifications is satisfied by a particular actor, one examines the behaviors of the

component actors and demonstrates that the connection of these behav 10rs realizes

the behavior that is required.

2- A system (called PLASMA for PLANNER-like System Modeled on

Actors) implemented in terms of actor message passing that is c°nv*™n
'/°7he

interactive construction of scenarios, scripts, and justifications. A SCRIP! is a

PLASMA program which can be used to specify the action that an actor will take

when it receives a message. In our research we have attempted to investigate

semantic instead of syntactic issues. We have designed PLASMA to be a

transparent medium for expressing the underlying semantics of actor

message-passing. For example the semantics of the "knows-about »*«»*'£ *"

actors dictates that PLASMA must use a particular syntactic rule (lexical binding)

for the referents of identifiers. The semantic model specifies that acquaintances of

an actor must be specified when the actor is created. PLASMA satisfies this

semantic constraint by using the values of the identifers at at the time of creation

for the free identifiers in the script of a newly created actor since these are the only

actors available to be used as acquaintances.

3- A mathematical theory of computation which can represent any kind of

discrete behavior that can be physically realized. Our goal is to have a robu^.

theory whose theorems are not sensitive to arbitrary conventions and definitions. A
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theory which will be widely applicable as a mathematical tool is needed for

formalizing and investigating properties of procedures. Currently our theory takes

the form of a set of laws that any physically realizable actor system must satisfy

together with a set of axioms that characterize the behavior of a powerful modular

set of physically realizable actors (the primitives of PLASMA) which embody

conventions for discourse among actors.

4: The Event Diagrams presented in this paper are a further development of a

graphical notation used by Richard Steiger in his masters thesis for displaying

relationships among the events of an actor computation. In this paper we use them

to show the causal and knowledge relationships that characterize simple control

structures such as iteration and recursion as patterns of passing messages. Given an

outline of important hypothesized events and causal relations among the events of a

particular computation (i.e. a SCENARIO of the intended behavior of the system),

event diagrams aid in abstracting scripts of modules that are capable of realizing

this behavior. For example we plan to explore the abstraction of the scripts of

actors for simple procedures for data structures from scenarios of their intended use.

Conversely, they aid in the analysis of an existing system by graphically displaying

the relationships among the events occuring in the system for particular cases of

behavior. Using the displays available on our time-sharing system, we would like to

automate the construction and analysis of event diagrams that have been done by

hand in this paper. We would like to investigate the construction of an "eclectic

magnifying glass" which provides flexible ways to specify which events and

relationships in the history of a computation are to be be displayed.

This paper introduces and describes the relationship between Event Diagrams and PLASMA for simple

computations that do not involve side-effects. Issues of parallelism, inter-process communication, and

synchronization will be treated in subsequent papers building on the foundation provided by this paper.

For a mathematical treatment of the actor model of computation see (Greif and Hewitt:

SIGACT-SIGPLAN 1975) and (Greif: dissertation 1975). Issues of behavioral specifications are treated

in (Greif: dissertation 1975), (Hewitt and Smith: Towards a Programming Apprentice 1975), (Yonezawa:

Symbolic Evaluation as an Aid to Program Construction).
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SECTION IV — ACTOR CONTROL STRUCTURE

IV.t — Introduction to Event Diagrams

From a strictly input-output point of view there is no difference between iterative and

non-iterative implementations of a module. In order to rigorously analyze control structures it is

necessary to have a model of computation that is capable of displaying the internal structure of

computations.

We shall use event diagrams to display the internal structure of computations. Such diagrams

can be used to display many of the significant internal structural relations in a computation. A legend

for the notation used in these diagrams is given on the next page.

^""S,..

f*\
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Legend for Event Diagrams

the box represents the actor A

helper i * _*
* fcnows about y as "helper

M £> the double line represents the EVENT which consists

of sending the messenger M to the target T

E
i __. r

M,
i

M, >

the "railroad tracks" are used to indicate that the

occurrence of event E
t

results in the occurrence of the

event E2
and thus Ej must precede E2 in time. The

event Ej has messenger Mj and target Tj whereas the

event E2 has messenger M2 and target T2 .
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IV.2 — Actor Transmission

Actors make use of one universal communication mechanism called ACTOR TRANSMISSION

which consists of sending one actor (called the MESSENCER of the transmissic«)£«"»•« ***

(called the TARCET of the transmission). Each actor transmission defines an EVENT in which the

MESSENCER arrives at the TARCET. The target and messenger are the immediate

PARTICIPANTS in the event. I.E. if E is an event with messenger actor M and target actor T then

(participants E) * (MTJ

Actor transmission enables the knowledge in the local context of the target actor T to be Integrated

with the information of the messenger actor M since the acquaintances of both the messenger «* «*?
are available for use when the messenger arrives at the target. Furthermore this constitutes the only,

information available at the Instant of computation defined by the event!!!

/•""N

Event recording the transmission of Messenger M to T

f~\
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Actor transmission is used to provide the necessary communication between actors to accomplish

the following kinds of actions:

calling a procedure

obtaining an element from a data structure

invoking a co-routine

modifying a data-structure

returning a value

synchronization of communicating parallel processes

The actor transmission communication mechanism enforces the modularity and protection of actor

systems. It provides the basis for constructing actor systems with explicit modular interfaces such that

user of a module (actor) can only depend of the behavior of the actor. The hardware enforces the

constraint that the user of a module cannot depend on its current physical representation.

lV.2.a — Messengers

In order to have a useful model of a message-passing system, the problem of infinite regress must
be explicitly addressed. The actor message passing model provides for primitive actors to deal with

this problem. When aprimitive actor receives a request, it is unnecessary for the primitive to send any
further messages in order to properly respond to the request. In particular this means that a primitive

actor mUst be able to obtain some of the acquaintances of a messenger which it receives without having
to send any messages. Packagers (see appendix) provide the primitive mechanism needed in PLASMA
for transmitting messengers between actors.

Once an actor, m, (serving as messenger) is transmitted to another actor (serving as the target), t,

the computation proceeds by following the script of t using information from m. For this to be of any
use as a model of communication, it must be that m obeys some fairly standard conventions. These
provide the basis for meaningful discourse between actors. We will adopt the convention that al! of the

messengers constructed by the PLASMA system are packagers^ of the following form:

(messenger: (agent: a) (envelope: •) (banker: b))

where a is an actor representing the agent responsible for the computation, • is the envelope of tht

transmission, and b is the banker funding the computation. The explanation of bankers and agents Is

outside the scope of this paper so we shall say no more about them.

2: Readers who are unfamiliar with the packagers of PLASMA may wish to consult the appendix.
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IV.2.b — Envelopes

In many cases the envelope of a messenger will simply contain a message. A response to a request

is either a REPLY envelope with a reply message to the request packaged as

(reply: the-messagg )

or a COMPLAIN envelope with a complaint message packaged as

(complain: the-m»ssag»)

which explains why the request could not be honored.

Often the envelope of a messenger is a REQUEST which in addition to a request message

contains an actor c to which a reply to the request should be sent. Such an envelope is packaged as

follows:

(re</u««t: tha-message (reply-to: c))

The ACTOR c is closely related to the continuation FUNCTIONS used by Morris, Wadsworth,

Reynolds, and Strachey.

An ordinary functional call to a function f with arguments argj through argK is implemented

in PLASMA by passing to f a request envelope with a message consisting of the tuple [argj, ..., «rgk]of

arguments and a continuation actor to which the value of f should be sent.

IV.3 — Request and Reply

Perhaps the simplest control structure is the ordinary request and reply pattern of activity that is

implemented in most programming languages as a procedure call and return. None of the internal

structure of the actor being invoked is shown. Instead the description articulates only the input-output

behavior of the actor.

if*\
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Consider the example of a request being sent to an actor factorial to compute its value for the

argument tuple [3] and send the answer to the actor C. The diagram shows the two events consisting of

the above REQUEST (i.e. factorial is sent a messenger Mj with message [3] and continuation C) and the

REPLY in which C is sent a newly created messenger M2 with message 6:

[3]

message

M,

reply-to

^ factorial

~

C
^\ ir

M
2

message
6r\i

An Event Diagram for the Computation of (factorial 3)

The above event diagram treats factorial as a "black box" with none of the internal events shown.

Notice that the computational process follows the "railroad" tracks from the first event to the second

event. We will now proceed to examine the computation more closely. This is an application of the

idea of using an eclectic magnifying glass to articulate the description of a behavior in greater detail

What is seen depends on how factorial is implemented as well as the focus of the magnifying glass.

When we look into the implementation of factorial, we will see a number of events that occur between

the two which are diagrammed above.

Note that the value 6 which is constructed by the actor factorial is not an acquaintance of factoriftl.

Instead it is the "reply" acquaintance of the messenger M2 which is sent to the continuation C.
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IV.4 — Recursion

IV.4.a — Scripts for a Non-Iterative Factorial

Suppose we have a non-iterative implementation of factorial. A script written in PLASMA for

such an implementation is given below. Readers who are unfamiliar with the notation can consult the

appendix which provides an informal introduction to PLASMA.

(factorial s factorial it defined to b«

(=> [=n] {receive a menage with one element which will be called n

(rules n '**• ""J** f°T n or*

(s> 1 tif '» •* 1

1) ;then return X

(s> (> 1) ;el$e if it i$ greater than 1 then

(n * (factorial (n - 1))))))) ;return n time$ factorial of n minui 1

\j00P\-

&*%
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IV.4.b — An Event Diagram for factorial Calling Itself Recursively

We are interested in looking more deeply into the control structure of recursive procedures. To
this end we take the above non-iterative implementation of factorial as a concrete example to be studied.

When factorial receives the message [3] it is not able to reply immediately since it does not directly know

what (factorial 3)is. Below is an event diagram of the computation that results from sending factorial a

messenger Mj with message [3] and continuation C up to the point of the first recursive call in which

factorial is sent a newly created messenger M2 with message [2] and continuation C where C is a newly

created actor that knows about n and C. The script of C is such that whenever it is sent a message y, it

sends C the message (3 * y).

C
Factoria

c

reply-to

£
M,

message.
KIS-1 3

m"7]
message

reply-to

M^

c

Jr e p
I

y- 1 o

C
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IV 4c ... Snapshot of Storage at Instant when factorial receives [1]

Below we present a snapshot of the storage at the instant factorial receives the message [l\ The

rule for computing the amount of storage being used at the instant of any particular event is very

simple: Merely count all the actors that are in the transitive closure of the acq"a«ntances o the

participants involved in the event. Recall that the participants of an event are the actors immediately

involved (i.e. the target and messenger).

f*\

M 3factorial
y
\r

1

reply -to

\

m essage

c
reply-to c reply-to

c" [

V
M

1

n

r r

3 2 1

/""y
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IV.4.d — Viewing Recursion as a Pattern of Passing Messages

The above event diagram exhibits the characteristic structure of a recursive computation. This
pattern is familiar to users of ALGOL, LISP 1.6, and PL-1 and other programming languages that
make use of a pushdown stack to implement recursion. In such languages the amount of stack used by
the implementation grows monotonically until factorial is called with the argument 1 and then
monotonically decreases as the stack is popped.

Below we give an event diagram that displays the pattern of passing messages characteristic of
recursion in the computation of (factorial 3). Note that the computation proceeds from event to event
along the "railroad tracks" in the diagram.

Factorial

message

c

c

c

M .

reply- to

M,
message

» C*3- * 3

reply-to

M message

HUDX
M m e ssage

*lHD
reply-to t

'

I

_ messaae
2 U~-^2- M,,

-\S* ^

=>

reply-to

C

6
messaqe
4

—

—-?. ,. M.

14-

n

reply-to

z£> c
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^ IV.4.e — Characterization of Recursion as a Pattern of Passing Messages

Thus we see how recursion can be characterized as a pattern of passing messages using event

diagrams. The characteristic feature is the build up of a chain of continuation actors each o.ne of

which knows only about the next and which eventually replies to the next with the answer. Notice that

this characterization of recursion in terms of relations between events is independent of the syntax of

the language for scripts which gives rise to the behavior. For example the same characterization would

hold for a recursive implementation of factorial in ALGOL. The semantics of ALGOL can be defined

using relations among events in a manner similar to the way in which the semantics of PLASMA is

defined.

The existence of the actors labeled C» and C" in the above diagram and the events in which they

are the target are difficult to explain in terms of the above PLASMA script for factorial. In order to

explain the origin of these actors and events, we need to explain more of the underlying implementation

of PLASMA.

IV.5 — Envelope Level Scripts

Thus far in our PLASMA scripts we have examined information communicated in the messages

of envelopes. At this point we would like to introduce the envelope level which allows access to other

information in the messengers of actor transmissions. Every messenger always contains (among other

/-\ things) an actor which serves as the ENVELOPE. In turn every envelope always contains an actor

which s§rves as the MESSAGE. Additionally REQUEST envelopes contain actors called

CONTINUATIONS to which replies to the messages should be sent.

The reason that it is useful to introduce the envelope level transmitters and receivers into scripts

is that otherwise much of the control structure (pattern of passing messages) has to remain implicit in

something like an evaluator or a compiler. Envelope receivers and transmitters provide the mechanism

for expressing more explicit scripts so that none of the processing or allocation of storage is going on

behind the scenes.

Envelope receivers and transmitters are analogous to ordinary receivers and transmitters in many

respects. They are intended to be used as a notation for writing scripts in which all the computational

events and actors are explicitly shown. In this way the structure of simple control structures such as

iteration and recursion can be explicitly characterized as patterns of passing messages.

PLASMA uses the syntactic convention of using the number of shafts on the transmitter and

receive arrows to reflect the level at which the transmission is being referenced; one shaft meaning

ordinary message level, and two shafts meaning envelope level. Thus:

<= is an (ordinary) message-level-transmitter, and

<=s is a envelope-level-transmitter.
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Similarly,

s> is an (ordinary) message-level-receiver, and
hs> is an envelope-level-receiver.

Below we use this notation to make the messageTpassing underlying the implementation of PLASMA
more explicit.

For example an ordinary message receiver which receives one argument n and replies with the
value (n + Dwritten as

<s> [=nj

(n + 1))

can be written at the envelope level as follows:

(ss> {request: f=n] (roply-to: =c»

(c <== {reply: (n + 1J»)

IV.5.a — A More Explicit Script for the Non-Iterative Factorial

The correspondence between the event diagram for the non-iterative implementation of factorial

and its script can be made more apparent by using envelope transmitters and receivers to make the
underlying implementation explicit. The script presented below is intended to explicate how the
implementation of PLASMA actually works.

(factorial s factorial i$ defined to be
(=s> {request: [=n] {reply-to: =e)) ;receive a request to compute the value of factorial for

;an argument tuple whose only element is n and

;send the reply to the actor €

(rules n ;the rules for n are

(s> 1 ;if it is I then

(c <== {reply. 1))) ;send c a reply envelope with message I

(=> (> 1) ;ef*<» if it is greaser than i

(factorial <== ;send factorial a reque$t

{request: [(rt - 1)] ;with message (si - I) and
(reply-to: continuation the following aet&r

(==> (reply: =y) ;if a reply envelope with message y is received

«
'

' (c <" (reply, (y * n))))))))))) ;then send c a reply envelope with message (y * n)

Notice that the above script specifies that before recursively calling factorial (in the case where n#I), a
new actor is created as the reply-to: component of the envelope sent to factorial. This new actor is

created with ACQUAINTANCES n and e and has the following SCRIPT:
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(ss> (reply: =y)

(c <» (reply: (y * n))))

Operationally, the script says 'for each reply y that it received, multiply it by n and tend the retailing

product at a reply to c".

^*\

r\
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IV.6 - Iteration

It is well known that another, more efficient implementation of factorial uses iterative control

structure. Event diagrams will be used as a too! to illustrate the behavior of this more efficient

implementation of factorial. One idea for an iterative implementation is to gradually build up the
product while counting down the argument -doing one multiply for each iteration. So we define an
actor called loop which should be sent both the current accumulation (which is initially 1) and the current
count (which is initially the input n) on each iteration. The obvious way to do this is to repeatedly send
loop a sequence of the form [accumulation count].

IV.6.a — A Script for an Iterative Implementation of Factorial

{factorials -.factorial'.'i$ defined to he

(s> [sn] ;receive one argument and call it n

([In] => ;send a 2-tuple with element* 1 and. n to

(loop 3 ;o newly created actor named loop which behaves as follows

{=> [saccumulation =count] ;receive a 2-tuple at the current accumulated product and count

(rules count ;the rules for the count are

(=> I ;if it is I then

accumulation) .return the accumulation

(=> (> 1) ;else if it is greater than t

(loop ;te'nd loop

(accumulation * count) ;the accumulation times ike count

(count - 1 ))))))))) ;and the count minus &m»

Notice that the argument n is not an acquaintance of the actor loop in the iterative

implementation of factorial. The rule for calculating the acquaintances from the script of an actor

defined in PLASMA is very simple: the acquaintances of a newly created actor are the actors named by
the free identifiers in the script at the time the actor is created. Instead of being an acquaintance, the

actor n is sent to loop as the second element of the two tuple [In].



j*"%

Control Structure

IV.6,b — An Event Diagram for Iterative Factorial

Pas* 23

The script given above will exhibit the behavior diagramed below when factorial is sent the

message [3] This is an illustration of iteration as a pattern of passing messages. Note the repeated use

of the actor C as a continuation in the envelopes used in the iterative implementation of factorial.

f-'"^^

Factorial c

c

Loop c

<=

reply- to

Mt
messagej

[3]

reply- to

r
M message. [13]

reply- to

£
M message

|

[ 3 2]

£
reply-to

M.
message^

[ 6 1 ]

I

6 4
message

M S> c

/""\
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IV.6.C — A More Explicit Script for Iterative Factorial

Notice that the above implementation of 'factorial definitely uses iterative (finite-state) control
structure in the sense that it does not need any more memory than that needed for the values of count
and accumulation. We now incorporate envelope transmitters and receivers to make the script of the
iterative implementation of factorial more explicit. In this way the correspondence between the event
diagram for the iterative implementation and its script becomes more apparent.

(factorial a
. {factorial is defined $o be

(==> (request: [an] {receive a request with argument tuple [nj

[reply-to: =c)) ;and continuation c

({request: [1 n] (reply-to: c» ==> ;tend a request with argument tuple [I m] and
{continuation c to the,following newly created actor

(,00P s ;n«med loop
(ss> (request: [*accumulation =count] (reply-to: =d)) ;tuch that if a request is received with

{message containing the accumulation and count

{and continuation d
(rules count {checks the count

(=> 1 {to see if it is i

(d <== (reply: accumulation))) ;if so it sends the accumulation as a reply to d

(£> (> U {else if it is greater than 1 then

(loop <== {send loop a request t&hh

(request: [(accumulation * count) (count - 1)] {the appropriate message
(reply-to: d))))))))))

;and the cMiiiiuatioh d

The reason that this is iterative is that loopalways passes along the same continuation actor that it

receives with the message. The only continuation it needs, and therefore the only one that it holds onto,

is the one contained in the original envelope that was sent to factorial. The loop sends its answer to that

continuation directly when it is done Thus no extra storage is needed going around the loop.

Furthermore, in this implementation of iteration there are no side effects which change the behavior of
any actor. If the user wants, she can keep a complete history of all the events in her computation and
be confident that no information has been lost. Actor semantics account for the iterative behavior of
the above implementation of factorial without having to appeal to external implicit mechanism such as

an interpreter or any kind of external storage mechanism such as activation records. All the behavior
of the system is accounted for by the behavior of actors when they are sent messages. Furthermore all

of the storage is accounted for by the actors shown in the event diagrams. Event diagrams show how
Pi-ASMA is actually implemented using actors. The actor model provides a complete self-contained

rigorous theory of iteration as a pattern of passing messages. It provides an explanation for the
semantics behind the optimization rule used by many compilers that all "tail recursive" self-referential

definitions can be compiled using special iteration primitives such as "while" loops, "do" loops, etc.
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IV.6.d -- Meanine of "Recursion"

The term RECURSIVE has come to have at least three different meanings in computer science:

1: Effectively computable as in "recursive function theory"

2: Self-referential as in "factorial can be defined recursively in terms of itself"

3: Non-iterative as in "recursive functions use up more push-down stack when they

call each other whereas iterative loops do not".

word.

Using factorial as a simple example, we have shown how the actor message passing model can be

used to give additional precision to fundamental concepts in computer science.

(f"Y

/"""S



Page 26 Control Structure

IV.7 — Comparison of Recursion and Iteration

Below we present abstracted versions of the event diagrams for the iterative and non-iterative

implementations of factorial when called with 3 as an argument. In the diagrams below the message is

shown inside the messenger in order to more strongly bring out the pattern of message passing.

C
Factorial

6

C
<:

RECURSION

I
I

I

[ 3]

r 2]

[ 1 ]

=> c

reply-to

reply-to

reply-to

i> C 4

:£> c 4

^

ITERATION

reply-to



Control Structure

BTCfiTTON V — EFFICIENCY and INTELLIGIBILITY

V.l Modular Distribution of Knowledge

Since the defining characteristic of actors is that they send and receive messages they are

relatively unbiased with respect to assumptions about control structure and the distinc ion between data

and operators The neutrality on the issue of division of knowledge between data structure and

operators can be seen in the various ways in which one can distribute information in an acto.^systenr

How. one might choose to distribute it depends on one's purposes and the various.uses to ^which the

knowledge can be put. Often it is desirable to represent knowledge redundantly with different uses of

theTame know,^ appearing in several guises in several different place, The point is that the actors

allow distribution of knowledge in any way that is useful.

Early Artificial Intelligence programs were mainly organized as multi-pass heuristic m™"
consisting of a pass of information gathering, a pass of constraint analysis and a pass of hypothes s

formation. It is' now generally recognized that multi-pass organizations of th,^^ZuoZnl
because it is often necessary for information to flow across these boundaries in both directions in a

dialogue at all stages of the processing.

v? — Non-hairy Control Structure

One of the most important results that has emerged from the development of actor semantics has

been the further development of techniques to semantical^ analyze or synthesize ^*™*™"*
patterns of passing messages. As a result of th is work^wejhave found hat we can do withou

t
the

.

£.„p t,.r„a»a of "hairv control structure" (such as possibility list, non-local roto, and assignments

^^B~f!^l^^^^^r procedur^Jn.CONNIVEBI None of the -coutermen s of

^r^rT^TtTol structure" seem to be necessary for communication ^^\Ph^\°l^Z^
goal-oriented formalism. In particular "hairy control structure" is not needed to deal effectively^and

Efficiently with anomalies and complaints encountered in the course of attempting to ^hanlze

problem solving in such a formalism. The conventions of ordinary message-passing seem tc
,

provide a

better structured, more intuitive, foundation for constructing the communication systems needed for

expert problem-solving modules to cooperate effectively.

We have discovered a syntactic transformation by which it is possible to convert a program which

uses hairy control structure into an equivalent program that uses ordinary message passing. The first

step of the transformation is to convert each ordinary message receiver S> into the form ==> and ^ch

ordinary message transmitter => into the form ==> using the techniques used in the example
>

above.

The next step Then simply to convert each envelope level receiver «> into s> and each each envelope

level transmitter ==> into =>. The result is a program which make no use of hairy control structure.
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However, it is not recommended that the above method be used to convert programs that use
hairy control structure. The best way to achieve an efficient modular implementation of a problem
solver is to reason directly in terms of the behavior required to solve the problem. It is highly
undesirable to take a program that is difficult to understand because of the use of hairy control
structure and "improve" it by eliminating the hairy control structure by a local syntactic transformation
such as the one discussed above. In general such local transformations make badly structured
programs worse instead of better.

We will present two examples of problems where hairy control structure was originally used to
implement a difficult problem. As the problem to be solved has become better understood, more
intelligible solutions which do not involve hairy control structure have been developed.

V.3 — Gaining Efficiency thru Progressive Refinement

Efficient implementations of systems are usually most easily arrived at by beginning with n
high-level goal-oriented plan and then progressively refining using specific domain-dependent
knowledge. For example a simple recursive implementation for computing bas«,*P°n*n' is given below:

(integer-exponentiation s

(=> [=basa =exponent]

{rules exponent

(=>0

1)

(ehe

(base * (integer-exponentiation base (exponent - 1)))))))

In the above example we have made use of an expression of the form

(el$e body )

as a convenient mnemonic abbreviation for

<s> ? body )

making use of the fact that the pattern 7 will match anything.

The above plan is too inefficient to use to calculate large exponents. However, we do not intend
to use it for this purpose! Instead of executing the plan, we propose to refine it to make it more
efficient. These refinements have been accomplished by using a great deal of mathematical and
problem solving knowledge.

The efficiency of the exponentiation routine can be improved by transforming it into an iterative

form using the fact that integer multiplication is associative:
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(int*g*r-«xpon»ntiation =

(s> [=bas« =exponent]

([•xpon«nt 1] =>

(till-«xponent-z«ro s

(z> [=• =accumulation]

(rul«s •

(=>

accumulation)

(el$e

(till-«xpon«nt-z«ro

(•-I)
(accumulation * bas»))))}))))

However, the above procedure is stilt not very efficient.

Notice that if exponent is an even integer then

baM«xpon«nl a (bas, * bM«)(exPonent ' 2)

The above arithmetical fact can be used as the basis for making a faster exponentiation routine:

(<ast-*xponentiation s

{s> [ssbisf exponent]

((bass exponent 1] =>

(till-»xpon«nt-z«ro s

(s> [=b s« =accumulation]

(rutm •

(s>0

accumulation)

(s> {even)

(till-8xponent-»ro

(b * b)

(•/2)
accumulation))

(ehe

(till-«xponont-zero

b

(• - 1)

(b * accumulation)))))))))

This last refinement is probably fast enough for most practical purposes. However, John Reynolds has

pointed out that the above program is still inefficient in two ways:

/"-\
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After it is determined that the exponent is odd, when the loop is continued it is

unnecessary to test that (exponent - l)is even.

After it is determined that the exponent is non-zero but even, when the loop is continued
it is unnecessary to test that (exponent / 2)is non-zero.

Reynolds showed how these inefficiencies could be removed by the use of assignment statements and
gotos.

The double testing is easily eliminated in PLASMA by simply defining two auxiliary actors
which handle positive and even exponents as special cases. This example demonstrates how the
underlying strategies of optimizations can be captured by reasoning in terms of message-passing.

(faster-expon«ntiation s

(e> [abase ^exponent]

(let

(positive-exponent =

(=> [sb =e ^accumulation]

(rules e

(s> {even)

(positive-exponent

(b*b)

(e / 2)

accumulation))

(elte

(even-exponent

b

(e-1)

(b * accumulation))))))

(even-exponent h

(=> [=b =e saccumulation]

(rules a

(5>0

accumulation)

{else

(positive-exponent

(b*b)
(e/2)

accumulation)))))

then

(rules exponent

(s>0

1)

(else

(positive-exponent base exponent 1))))))
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The point of this example is that viewing control structure as a pattern of1^**^*^
be used to motivate optimizations that improve efficiency. A good programm^ ^Jod^^

£

writing high-level goal-oriented plans to specify a task followed by progressively ref»n»ng these^p ans to

Tb "in efficient implementations. To support a programming methodology based on progre sive

refinem n
"

necessary to have a unified coherent formalism which can encompass the neeewy

range of plans. The formalism needs to be sufficiently powerful to represent any potential optimiration

so tnat the complexity and efficiency of the optimization can be calculated.

/N

V.4 --- Generators

In knowledge based systems, it is unreasonable to store all the implications of the pledge

available at a given time Explicitly storing the answers to all possible quest.ons— of

incrementally generate implications as needed in order to answer questions.

In order to deal with this problem Newell, Shaw, Simon introduced a form of generators into

their nf— Posing Language. Since that time, the concept has undergone consul

further development. In terms of actors^M*^^^^^
present a Smple problem that illustrates how generators can be conveniently .mplemented in. PLASMA.

We will assume that we have some actors called trees such™<?^
l n̂«J&'Z

(terminal: Inhere I is the terminal symbol, or of the form <»on-.*rm,n«l: L RJwhere L and R are

right sub-trees.

For example the tree

(non-terminal:

(non-terminal: (terminal: A) (terminal: B))

(terminal: C))

1/ \2

,/ \2
C

/
A B

has the following fringe (sequence of terminals in left to right order) [A B C]

/""*••-
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as does the following tree:

(non-terminal:

(terminal: A)

(non-terminal: (terminal: B) (terminal: C)))

/L-K
A

< /
/

r-A
B

whereas the following tree

(non-terminal:

(terminal: C)

(non-terminal: (terminal: A) {terminal: B)))

has [C A B]as its fringe.

/ \2

c
y V

A B

The problem is to define the actor fringe so that for any tree T, (fringe T)behaves like a sequence
of the terminal elements of T. There are two important properties that characterize the behavior of
fringe. First, fringe of a terminal node must behave like a sequence with one element

(fringe (terminal: T)) * [TJ

The symbol « is used to denote behavioral equivalence of actors. Second, fringe of a non-terminal node
•nust behave like the sequence produced by concatenating the fringe of the left sub-node and the fringe
of the right subnode:

(fringe (non-terminal: L R)) * [Kfringe L) "(fringe R)]

The above specification makes use of the unpack operator ! of PLASMA which is explained in the
appendix.
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V.4.a — A HighLevel Implementation

From the above behavioral specifications we can immediately derive the following

implementation of fringe:

(fringe 2

(s> r=the-tree]

(rules Ihe-tree

(e> {terminal: =T)

[T])

(s> {non-terminal: =L =R)

[•(fringe U "(fringe R)]))))

;ffce behavior of fringe it defined to be

;whenever it receives a tree

;the rule* for the tree are

;if is a terminal T

;then the fringe i* a sequence whose only element it T

;else the tree must he a non-terminal

iand the fringe of the tree i*

;the fringe of its left sub-tree concatenated with

;the fringe of its right sub-tree

Unfortunately, the above implementation is not incremental because it immediately looks at all the

nodes of the tree and thus is exponentially inefficient. The above definition of fringe is still very much

a specification of what fringe is supposed to do as opposed to a detailed specification of hoi£ to

efficiently accomplish the task. This lack of concern with the details of implementation is the chief

advantage (and at the same time the chief disadvantage) of high-level implementations.

^**s

V,4.b — An Incremental Implementation

Incremental generation amounts to adopting a "wait and see" approach as to whether the rest of

the elements will be needed. The above implementation of fringe can be refined to be incremental by

use of the delay operator. Readers who are not familiar with the delay operator of PLASMA should

consult the appendix.

(fringe a •*'*• behavior of ,rin*- " defined to h*

(-> f

=

ihe treel
itehenever it receives a tree

*
(rules the-tree **• ~ l"/or *** 'T

""

& {terminal: =T)
;if is a terminal 7

fT j) ;then the fringe is a sequence whose only element is J

(s> {non-terminal: =L =R) *•*«• the tre* mutt be a ^-terminal

['{delay (fringe D) \{delay (fringe R))])))) ««"«* •*• &»& °f th°
*J^*»

;the fringe of it* left sub-tree concatenated unth

;the fringe of its right sub-tree

The "wait and see" approach is not always the most efficient implementation for every problem.

In particular often there is a space-time trade-off in the use of the delay operator. In many cases it is

more efficient to simply compute an expression E immediately than to wait by the use of {delay pirice

the latter can cause the retention of extra unnecessary storage. For example consider the following

definition:
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<f =

(=> [=X =h]

(rules x

<*> « 3)

0)

{ehe

h))))

Notice that the expression (f 2 HUGE)immediately evaluates to whereas the expression
{delay (f 2 HUGE))is an arbitrarily large amount of storage which will eventually evaluate to 0. The
reader might consider how the efficiency of the implementation of the delay operator can be improved
using partial evaluation.

An additional complexity is that PLASMA uses incremental sequences to implement pattern

directed retrieval from a data base. This data base must have side-effects because it is used to

implement communicating parallel processes [Greif and Hewitt 1975]. In this application the "do it now*
and "wait and see" implementations can result in different sequences of values! In order to make
interprocess communication work properly, careful control must be maintained over when delays are
introduced i nto PLASMA scripts. This issue arises in the implementation of shared resources whos
integrity must be protected as they are used by communicating parallel processes. For this reason
PLASMA has been not been designed to use the delay rule for evaluation as the default evaluation

mechanism as has been proposed for lambda calculus languages by Church, Cadiou, Vuitlemln,
Wadstforth, Henderson and Morris, and Friedman and Wise. Carried to its logical extreme" the

ultimate form of the uniform delay rule is to never compute the value of any expression unless the

value is needed for output to the external environment!
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^ SECTION VI — The LAMBDA CALCULUS of CHURCH

As we have explicitly acknowledged in our previous papers, the development of PLASMA and

the actor model of computation has been strongly influenced by the lambda calculus and by the work of

numerous researchers who have studied it. The lambda calculus of Church is a suitable formalism for

studying the behavior of effectively computable functions.

In our research we have attempted to mmtrnrrively build on this previous work by developing _a

problem solving formalism and semantic model for actors such as cells, serializes ,
and funnels which do

not behave like mathematical functions In the sections below we investigate the different ways that

previous researchers have used the lambda calculus as a formalism for studying the semantics of

procedures.

The actor model of computation is based on incidental and causal relations among events where

each event is defined by the act of sending one actor to another. Thus it is incorrect to speak of an

"actors interpreter" because a semantic model does not specify a language which can be executed. The

relationship between actors and PLASMA is analogous to the relationship between mathematical

functions and the lambda calculus. Although there is a well developed mathematical theory of

functions as sets of ordered pairs, there is no such thing as a "functions interpreter". The lambda

calculus is just one of many possible languages which can be used to define the behavior of

mathematical functions. Similarly, PLASMA is just one of many possible languages that can be used to

define the behavior of actors.

In some useless sense all programming languages are equivalent. It is possible to simulate the

behavior of any programming language using any other programming language in common use.

Naively it might be thought that ALGOL is "more powerful" than FORTRAN because ALGOL has

recursion and FORTRAN doesn't. However, there is a programming style in FORTRAN which

enables recursive programs to be written in FORTRAN corresponding very closely to the way in which

the programs would be written in ALGOL. The simulation involves allocating a large array to hold

the temporary values needed in recursion. Similarly it is possible to simulate the behavior of PLASMA

using a lambda calculus interpreter. The table below gives a simulation method for important

behaviors of actors:

BEHAVIOR PLASMA LAMBDA CALCULUS

PRIMITIVE SIMULATION TECHNIQUE

r\

lT\

mutual-reference labels Y operator

side-Affects

synchronization

parallelism

cell "global state" of memory

serializer "global oracle"

funnel "global state" of program counters

All of the above simulation techniques work by systematically adding extra arguments to lambda

-ai
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expressions. To simulate cells [Scott-Strachey] an extra argument is added to every lambda expression
which is to be bound to a lambda expression which contains the "current contents" of all the cells on a!!

the machines of the system. An assignment of new contents to a cell is simulated by constructing a new
lambda expression which simulates the "next global state" of all the cells on the machines. Similarly to

simulate synchronization an extra argument is added to every lambda expression which is to be bound
to a lambda expression which simulates the "next" instruction to be executed on one of the machines
executing in parallel. Thus the lambda calculus can be used to simulate the behavior of an actor system
running on a network of machines executing in parallel. The lambda calculus simulation approach
attempts to model all behavior by reduction to lambda abstraction and application. This raises an
important question:

For what purposes is lambda calculus simulation a useful model of computation?

The answer to this question is currently under investigation by many researchers. We suspect that it

will be several more years before researchers have reached a consensus of opinion on the question.

However, we can make a few preliminary remarks that bear on what the ultimate answer might be.

Simulation using lambda expressions docs not correspond very closely to the mechanisms that
are actually used to implement communicating parallel processes on a network of mach ines
executing in parallel. Networks of machines will soon become very common because of the rapidly
decreasing cost of processors and rapid development of technologies to inexpensively provide
high-bandwidth connections between machines.

PLASMA attempts to provide modular primitives which are intended to be used to implement
abstractions that manifest useful problem solving behaviors such as communicating parallel processes.

Within the actor model of computation, the behaviors of primitives such as cells, serializes, and funnels
are axiomatized using incidental and causal relations among events. The actor model is intended to

serve as the semantic foundation for a Programming Apprentice that supports an evolutionary

behavioral programming methodology. In order for a Programming Apprentice to communicate
effectively with the programmers building a system, it needs a semantic model which closely corresponds
to the way in which programmers think about their computations. The actor message-passing model

corresponds closely to the mechanisms that are actually used to implement communicating parallel
processes on networks of machines.
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SECTION VII — FUTURE WORK

VIII — Applications

The PLASMA system described in this paper is currently being implemented at the MIT

Artificial Intelligence Laboratory. In the spring of 1975, PLASMA was defined meta-circularly in terms

of itself and then translated by hand into LISP using making use of LISP macros written by Rum

Atkinson that make LISP resemble a subset of PLASMA. In the fall semester of 1975 the translation

was completed and brought into an efficient running state by Howie Shrobe. However, more work is

needed before it will be usable for writing large systems. This implementation [which has modularity

and good human engineering as its chief design goals] is still under development. It is based on the

actor transmission communication mechanism using primitive actors coded in LISP. The development

of the actor metaphor will continue in the next year to gain some experience in using it for the

following kinds of applications:

to implement a distributed symbolic evaluator for a Programming Apprentice [Hewitt

and Smith 1975, Rich and Shrobe 1975, Yonezawa 1975]

(
.;...

I

to implement other procedural knowledge-based systems such as a stereotype-based visual

perception system [McLennan 1975]

as a formalism for defining message passing systems to try out ideas for the modular

distribution of knowledge for a society of communicating experts

to experiment with various scheduling and synchronization policies using serializes

[Atkinson and Hewitt 1976]

as a basis for a flexible actor-based animation language [Kahn 1976]

/""%
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Villa — Incremental Perpetual Development

The development of any large system (viewed as a society) having a long useful life must be
viewed as an incremental and evolutionary process. Development begins with specifications, plans,

domain dependent knowledge, and scenarios for a large task. Attempts to use this information to create
an implementation have the effect of causing revisions: additions, deletions, modifications,
specializations, generalizations, etc. At all times in the perpetual development of the system the
programmers are confronted with

i
1 J A progression of more refined plans [programs, implementations, etc.]

which partially accomplish some of the tasks specified.

2: Partial specifications [contracts, intentions, constraints, etc.] for some of
the subtasks which are to be accomplished.

3: Partial justifications [proofs, demonstrations, analysis of dependencies]

regarding how some of the plans satisfy some of their specifications.

4: Partial descriptions of some of the background knowledge
[mathematical facts, physical laws, questions of interactive users, government
regulations, etc.] of the environment in which the system will operate.

5: A collection of scenarios [at various articulations of detail]

demonstrating how the system is supposed to work in concrete instances.

The success of an evolutionary behavioral modeling methodology is highly dependent on the
development of competent Programming Apprentices [Hewitt and Smith 1975, Rich and Shfobe
I.376, Yonezawa 1976] that help keep the above potentially disparate descriptions of a system
coherently organized. The primary benefit of maintaining this coherence is not to prove once and for

all that the implementation is CORRECT in any absolute sense. Changes in the environment external

to the system will require that the system must either adapt its behavior to the changed circumstances or
be supplanted. Rather the chief benefit of demonstrating the coherence of multiple descriptions of
•

s

ystem is to make the dependencies among the parts explicit so that the system can be readily
adapted to the perpetually changing external environment. Already for many systems considerably
more money is spent on modification and enhancement than on initial design and implementation.
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^ vn? - The A ntnr Problem-Solyijigjfrgtg^h^r

The actor metaphor for problem solving is a large^^^^^^-^
Problem solving proceeds by the attempts of experts to^" ™*^ forCcUonVe

solution followed by attempts to criticize the usuaHy^^^^^SL^ hand. Tentative

put forward for trial, to be eliminated or modi >« n« germane to the p
demonstrated to be

acceptance of a proposed plan must be comb.ned with an'^"/J*,^^ t0 1lve in a world

infeasible. We make it our task to ™"™\2?
?J°t™t as welf a^they can; to take advantage

characterized by incomplete knowledge; to adjust themselves to it a we
n

.they ^ ^^^
of the opportunities they can find in it; and to solve h e obiem f possible (hey ^ ^^
^rri^rr^

Newell (.962) points out two potential^^1^^
adopt the actor problem solving —log, FJ* *. ^JZ^^ZamrtZ that can

sometimes contain strategies, not just facts The -ra.it be^ n the fo p ^ be

sis;x= -;;"rs^rrrm x* .» **- -*.
to help control aimless thrashing.

.-nS. on b. mli«d ^Jfflgfe A. '"M™^"™_'h ,™* """ ' "n J possibte to

of a small scientific subfield.

/""S
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Apprentice for expert programmers. The behavioral programming methodology which PLASMA is

intended to facilitate owes a tremendous intellectual debt to the concepts in SIMULA [Birtwist e
et .1.

1973, Palme 1973]. We are indebted to Alan Kay for calling our attention to these virtues of SIMULA.

The current implementation of PLASMA was designed by Carl Hewitt and has been

implemented in LISP over the last year by a team of people whose principal members were Russ

Atkinson, Tom Downey, Carl Hewitt, Marilyn Mclennan, and Howie Shrobe. The implementation has

been accomplished using a set of LISP macros implemented by Russ Atkinson that make LISP into a

very limited subset of PLASMA. Howie Shrobe put the system together in the fall semester of 1975.

This spring Marilyn McLennan has brought the system to a usable state. Tom Downey and jerry

Morrison have implemented a modular format printer for PLASMA programs. Carl Hewitt and Russ

Atkinson have designed modular primitives for the Implementation of parallelism and synchronization

in PLASMA.

^*%.
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SECTION X — APPENDIX: Introduction to PLASMA

XI — Sequences and Collections

We will begin by presenting some very simple PLASMA scripts and gradually work our way up
to more complicated examples.

Meta-syntactic variables will be underlined.

* We note initially that [Aj Aj> ... Aj^means an ordered sequence of the actors Ajthrough
Ajyjwhereas {Aj A_2 ... A^Jmeans a unordered collection of the actors Ajthrough AjyThus [3 'bjls not
equivalent to [*b 3]a1though {3 'b}is equivalent to {'b 3}.Also collections behave differently from
mathematical sets in that {3 'b 3}is not equivalent to {3 'bjbut is equivalent to {3 3 'b}.

Thus PLASMA has syntactic delimiters which are used consistently for the following different
purposes:

[...] delimits an ordered sequence of elements

{...} delimits an unordered collection of elements

(...) delimits an expression in PLASMA

X.2 — Transmitters

A simple syntax for sending an actor M(called the message) to an actor T(called the target) is:

(T <= M)

or the following, which is entirely equivalent3

(M => T)

Thus,

(['this 'is 'a 'simple 'sentence] => parser)

will send a sequence of the five symbols 'this, 'is, '«, 'simple, and 'sentence to the actor denoted by
parser.

S: The reason for having two different syntactic forms for the transmission of a message is that often
it is more readable to have the expression for the message before the expression for the target or vice
versa. The difference is particularly noticeable when one is much smaller than the other.
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Since it is very common to want to send a sequence of arguments to an actor, a simple syntactic

form is needed for this purpose. For example the notation used above would require us to write

(+ <= [x y i])in order to compute the sum of x, y, and 2. whereas we would prefer use the syntax

(Uyi).

In PLASMA, as in LISP, an expression of the form (§4 Ej ... |„)ardinarily denotes an ordinary

procedure call with procedure Ej and arguments Ej and E„. Since PLASMA also uses parentheses as

the delimiters of special syntactic forms, it needs to have some mechanism to distinguish special syntactic

forms such as (f <= [3 4])from ordinary procedure calls so that <= is not taken to be the second

argument of f. PLASMA uses RESERVED SYMBOLS in parenthesized expressions for this purpose.

For example both =>and <=are reserved symbols. Transmitters using the reserved symbols =>and <=are

read as forms of the verb "SEND". For example (I <= [1 3])would be read as "f is sent the sequence 1

3", or "a sequence of 1 and 3 is sent to!.

For example

(factorial 3) is equivalent to (factorial<= [3])

(generate) is equivalent to ([] s> g«n«rate)

Note that when either of the transmitter arrows <=or =>is written

out explicitly in a special syntactic form, there is always one

expression before the arrow and one after it.

Also note that arithmetic can be expressed in infix notation as

well as prefix notation. Arithmetic expressions are implemented

in PLASMA by making arithmetic symbols such as + and *

reserved symbols so that special modules associated with these

symbols can process the expression in which they occur when the

script is reduced.

The syntactic forms

(target <- message) and (message => target)

are designed to direct the eye of the reader along the normal flow of control of the message to the

target The transmitters of PLASMA are a generalization of the functional applications in the lambda

calculus of Church which were defined in terms of substitution semantics. The semantics of

transmitters are behaviorally defined in terms of events in the actor message-passing model.

f~\
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X.3 - Pattern Matching

Pattern matching is used in PLASMA to recognize actors which satisfy a simple description and
to bind the answers to simple requests. The process is meant to be quite intuitive. For example The
prefix = in front of an identifier name in a pattern can be used to bind the identifier to the
corresponding object being matched. For example typing

{match [=x =y] to [3 4J)

can be used to bind x to 3 and y to 4

X.4 — Receivers

Corresponding to the syntax for sending messages is a syntax for their reception. A PLASMA
message-receiver has the following syntax:

(s> pattern

body )

where the reserved symbol s>is read as "RECEIVE". Note the use of the three horizontal bars for the
shaft a receive arrow as opposed to the use of two horizontal bars for a transmitter arrow. If an actor
with the above definition is sent a message which matches patternthen bodywill be evaluated in the
envirofthierit resulting from the pattern match. For example the PLASMA expression

([5 7] => ;send the tuple whose first element is 5 and second element 7
(=> [=x =y] ;to a receiver which names the first element of the sequence received x and the second y

(x + y)))
jon(Bf repUes wUh the sum of % and y

evaluates to 12.

For the sake of exposition we will call the actor that (s> pattern body)creates a receiver. The
behavior of the receiver is roughly as follows: when the receiver is sent a message, it matches it against
the pattern. A PATTERN is an actor which decides whether it will match another actor called an
object - the process is asymmetric. If the match is unsuccessful, then the receiver complains that the
message is not acceptable. If the match is successful, the pattern creates a new environment (which
contains the bindings that resulted from the matching process). The receiver then sends the body an
eval message that contains the new environment.

The syntactic form for receivers

(s> pattern body )
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is designed to direct the eye of the reader along the normal flow of control with the message through

the pattern into the body. The receivers of PLASMA are a generalization of the lambda expressions

which were defined by Church in terms of substitution semantics. The semantics of receivers are

behaviorally defined in terms of events in the actor message-passing model.

All messages in PLASMA are received through patterns which should be kept gujte simple.

Writing complicated patterns results in tortuous obscure code. Simple patterns are a good way to

bind identifiers to values. Pattern matching in PLASMA is a generalization of the lambda calculus

identifier binding mechanism. The semantics of receivers is behaviorally defined by axioms in terms

of the actor message-passing model.

The evaluation of a receiver results in an actor which has as its script the receiver and as its

acquaintances the actors bound to the free identifiers of the receiver. For example if we type

(• = [(3 + 2) (3 - 2)])

then we will create an actor [5 l]which is called a in the current local environment in which we are

working. If we then type

. .. m ,
;define f to be an actor which

(s> r=x] ,when it receive* a sequence with one element which will be called x

.
aj»j

;replie* with % of x and a

an actor will be created which has [5 ljand the value of g as its acquaintances.

X.5 — Conditionals

Conditionals in PLASMA take two standard forms which are closely related. One form

conditionally tests the value of an expression, the other conditionally tests the incoming message. The

first is known as the rules expression and has the form:

(rules an-expression ***• «*" /* th* actor an"exPressi<>^ °r*

(5> ^a«ernT & *» matche* ^2^1J*«"
bod j

ireply with the value of body t

<5>~pd"tern,
;ehe if il matche» Pat!*rn2

'*•"

body") V*ply u>*th the value of bodyg

<s> pattern, •'*'" * """' mo,c* E8^" "

bpdyj) ireply with the value of bodfc,

The expression is matched against the successive patterns until it matches one of them; then the

corresponding body is evaluated in the environment resulting from the pattern match. For example.

_Ji!
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(rules (3+4)
(=> {even)

;the pattern {even) will match any even integer
5)

* =n »'**« pattern an will match any actor and hind n to that actor
*2 * "^ return twice the value of n

evaluates to 14.

PLASMA uses a similar construct (called a cases statement) to conditionally dispatch on an
incoming message.

'
88*s

:the cases for a message sent to this actor are
*5> P-**™ 1 ,'•/ the message matches pattern | then
SSSLV ;reply with the value of body

3
<s> B#arn2 ;else if the message matches pattern2 then

=22^2' {reply with the value of bodyg

'=> Pa"*rnn ;else the message must match pattern^ so

BSS/n
"

;reply with the value of body
ff

A message sent to an expression of the above form is matched directly against the successive patterns
until a match is found, whereupon the corresponding body is evaluated in the environment which
results from the match.

For example the following actor replies with yes to any even number it is sent; replies with no to
any odd number; and is otherwise not-applicable.

(cases

(s> (even)

yes)

(s> {odd)

no))

X.6 - Definitions

In general, typing an expression of the form

(name = definition )

will cause PLASMA to do its subsequent evaluations in an environment which has been extended by
binding name to the value of definition.
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For example the normal way to interactively define integer-exponentiationwhile working at a

console would be to type:

(integer-exponentiation s ;int.ger-.xponenti.tion .'. defined to have the following behavior

(=> I=base =exponent] whenever il receive* a sequence of two argument* called base and exponent

(rule, expon.nl **• «*" *" '*• "TrTT
(=>

;,/ " " "
"

14
.reply that the antwer it 1

,
=> (>

» ;«!«« »/ il it greater than then

(bass * (integer-exponentiation base (exponent - 1 )))))))

;the amtoer it the bate timet the bate to the power of the exponent minat I

As an obvious extension to our notation for definitions we allow a parenthesized expression on

the left hand side of a definition. For example we can define integer exponentiation in terms of an

infix operator as follows:

((=base to-integer-power exponent) s ,en exprettion of the form (=b.s. to-integer-power exponent)
u »« « i~ ^ defined by the following behavior

i i «^-_„» i'ne rulet for the exponent are
(rules exponent ,»..•«* .i„.«

;if it is then

. ;the antwer it 1

»
s> t> j

;elte if il ii greater than liken

(base * (base to-integer-power (exponent - 1))))))

;the antwer it the bate timet the bate to the integer power of the exponent ?n»m»« '

Using the above definition (5 to-integer-power 3)evaluates to 125. In this way we can conveniently

define new kinds of syntactic forms.

MUTUALLY REFERENTIAL DEFINITIONS are easy to make using the reserved symbol let as

follows:

(Jet

(namei s Dj)

(nameg s D2)

(namon 2 D„)

then

body)

which evaluates body, in an environment with each name, bound to the value of D,. The equations are

mutually referential in that any occurrence of a namej within a ^ refers to Dj.

As a special case of the let construct we use

(name s definition)
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as an abbreviation for

U«t

(name s definition )

then

name )

Self-referential definitions are very useful in defining iterative, recursive, and co-routine control
structures. They are also useful in defining data structures that need to know about themselves.

At this point, we have enumerated all the ways to bind identifiers in PLASMA. Note that the
definition of every symbol is lexically scoped and that there are no "glpbal variables".

X.7 - Unpack

We will often make use of an extremely useful operator for sequences and collections called
UNPACK which is abbreviated as an exclamation point: {expressions always equivalent to writing out
all of the elements of the expression individually. Thus if sis bound to the sequence [3 4 5], then the
value of [1 2 !s)is [12 3 4 5]. Thus if the sequence [10 20 30 40 50]is matched against the pattern
[=x =y !=z], then xwill be bound to 10, ywill be bound to 20, and zwill be bound to [30 40 50J in the
environment which results from the match. Unpack is in essence the inverse of sequence brackets "[..J".

The Unpack operator neatly cleans up the confusion in LISP between different ways to construct
lists. Considering analogies between LISP lists and PLASMA sequences, the following similarities hold:

[xyz] is analogous to (list x y z)

[x »y] is analogous to (eons x y)

[!xy] is analogous to (append x (list y))

[!x !yj is analogous to (append x y)

The chief benefit of the unpack notation is that the programmer no longer needs to concentrate
on how to construct the structure by deciding whether to use CONS, LIST, or APPEND. Instead she can
concentrate on what the structure should be by writting a pattern of what it should look like. For
example the following PLASMA expression

[!a [b fc d] !e]

has the following LISP analog:
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(append

(com

(cons

b

(ippand c (list d)))

X.8 — Use of Sequences

Sequences are a useful mechanism for the implementation of the kind of dialogues needed in the

implementation of knowledge-based systems. They provide a useful common interface^ for co-routine

control structures. We shall bind the elements and sub-sequences using pattern matching. The

following pattern will bind f to the first element of a sequence and r to the rest:

[=f !=r]

For example if s is bound to the sequence [14 3 105]then typing the following expression in PLASMA

(motefc[=f !=r]ios)

w^J bind f .ip i* and bind r to [3 105].

As an example of the use of sequences, we define the function «um-o« which calculates the sum of

all the elements in a sequence

idefine the function sum-ol
(sum-of = '

.| receive a tequence
(S> [=th.-s.qu.nc.] m are

(ru..s the-s«,u.n«
,

f£^^ ., cmp|y

1\ ithen the mm itO

<S> [4h.-n.rt Mhe-rwQ ;ehe bind the ne*t and the re«

(the-next + (sum-of th.-r.st)))))) then return the n«. plu, the «.m of the rett

% For example (sum-of [1 4 9])evaluates to 14.

It is easy to build sequences. For example the following definition defines finite sequences of

consecutive decreasing squares.

f^\
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(sequence-of-squaras s

<=> [=n]

<rul,s n ;the rules for n are
<5>0 ;if it it then

U' ;the answer is the empty sequence
*s> ^ °) ,•«!«« i/ ii »« greater than tA«w

t(n » n) !(s«qu«nc«-of-squaros (n - 1))]))))

;%he answer is a sequence with n* followed the squares for n minus I

For example typing the following expression into PLASMA

(match [sfirst !=r»sl] to (saqiwnca-of-squar«s 4))

results in binding first to the value 16 and binding rast to the value [9 4 1J. Thus
(sum-of (soquence-of-squares 4))evaluates to 30.

X.9 - Delay

For many applications, it is more efficient to generate the squares in the sequence of squares
incrementally adopting a "wait and see" approach as to whether the rest of the elements will be needed.
To this end we introduce the delay operator which delays computation of the value of expression E
until the value is needed. Suppose that v« is the value of the expression (delay E) The value of f is

not computed until the actor v« is sent a message. The first time va is sent a message, the value of I is

computed and remembered. Thereafter v« behaves exactly like the value of E. It is unreasonable"to
delay the evaluation of any expression which does not always evlaluate to the same object.

.*
The delay operator can be used to refine the implementation of sequance-of-squaras to produce

an incremental-version:

(incr«mental-sequ«nc«-of-squaras s

(=> t=n]

(rules n

(s>0

n>
(8>0 0)'*%,''

\ir Kdelay (intramental-sequence-of-squares (n - 1)))]))))

Typing the following into PLASMA

(match [=fl »=rl] to (incramental-saquanca-ot-squares 10))

will bind f 1 to 100 and bind rl to an actor which is behaviorally equivalent to
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{delay (incr»mental-s«<|uanc«-o»-squar« 9))

At this point In time the only square that has been computed is the square of 10. Typing

[match [=f2 !=r2] to rl)

will bind 12 to 81 and bind r2 to an actor which is behaviorally equivalent to

[delay (incremantal-sequanca-of-squarM 8))

X.10 — Packagers

PACKAGERS are a primitive mechanism in PLASMA for packaging actors together. They are

very useful for packaging up the parts of a message. For example the notation [xj ... xn] for a sequence

is really just syntactic sugar for the package (*•>,«<*«: xj ... x„). Thus evaluation of an ordinary

function call of the form (( <» [^ ... xjjsends a package which is the sequence of arguments to f.

However, the use of positional notation within a sequence for the components of a message is neither

mnemonic nor secure. The packagers of PLASMA allow the components of the package to be explicitly

named and the physical representation to be hidden (for reasons of efficiency and cleanliness). They

permit all of the components of the package which are of interest to be selected in parallel and the

remainder of the components to be ignored (for reasons of modularity and extensibility). Additionally,

packagers provide for both the privacy and security of messages since in order to have access to the

contents of a package constructed by a particular packager, it is necessary to have access to that

packager. Packagers are the primitive authentication mechanism of PLASMA. A packager can only be

. taken apart by the packager which constructed it.

To illustrate the use of packagers we shall define a packager for complex numbers. First we

define packagers for the messages to which complex numbers must respond:

[packager (real-part?))

[packager [imaginary-part?))

To make these abbreviations more convenient to use we define the following abbreviations:

((ratal-part =z) s

[[real-part?) => z))

((imaginary-part =z) s

[{imaginary-part?) = > z))

Below we define a packager for complex numbers:

;the r«al-part of z U computed by

pending a menage atking 2 for it* real part

;the imaginary-part of z i* computed by

;tend a menage atking z for it* imaginary part

/""N

Ti
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{packager (complex: {real: ?) {imaginary. ?))

{define a packager for complex number* with real and imaginary component*
(s> (complex: (real: *x) (imaginary, ay))

(eases

(s> (real-part?) .|/ a,fce<f for tlte reat ^^ tnen
*' ;return x

(s> (imaginary-part?) tf atked for the imaginary part then

V ;return y
(h> (plur. =z) .{/ atkei for ,ne mm with z then

(complex: ;return a complex number with
(real: (x (real-part z))) ;real component the mm of x and the real part of Z
(imaginary, (y (imaginary-part z)))))

;and imaginary component the mm of y and the imaginary part of *
(s> {times: =z)

(complex:

(real: {(x * (real-part z)) - (y * (imaginary-part z))))

(imaginary ((x * (imaginary-part z)) + (y ». (real-part z)))))))))

Notice the use of the packager complex: both to construct complex numbers and to take them
apart into their real and imaginary parts. The above implementation is inefficient because of all the
message passing involved in computing the values of (real-part z)and (imaginary-part z)when doing
addition and multiplication of complex numbers. For example in the above implementation two such
messages are required to compute the sum in the following sub-expression of the above program:

(complex:

(real: (x + (real-part z)))

(imaginary, (y + (imaginary-part z))))

We will demonstrate how the efficiency can be improved in a purely mechanical way without
diminishing the generality of the implementation. The first step is to collect statistics of executions to
determine which actors are very frequently sending messages to other. This will soon reveal that the
expression (real-part z)quite often results in sending the message (real-part?)to z where z is of the form

(complex: (real: rz) (imaginary, j*))

This suggests that special code for this case might be generated in-line to speed up the execution.
Obviously the expression (real-part z)is completely equivalent to

(rules z

(=> (complex: (real: =rz) (imaginary: =iz))

(real-part (complex: (real: rz) (imaginary: a)) ))

(ehe

(real-part z)))
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By replacing real-part and complex: by their definitions and simplifying we obtain the following

expression:

(rules 2

(s> {complex: {real: srz) {imaginary, six))

rz)

{ehe

(real-part z)))

By performing the above transformation on all expressions of the form (real-part z)and

(imaginary-part z)and then pulling out common sub-expressions the following more efficient

implementation of the packager complex: has been derived:

{packager {complex: {real: ?) {imaginary. ?))

idefine a more efficient packager for complex number* with real and imaginary componontt

(s> {complex: {real: *x) {imaginary. «y))

(cases

(=> {jreal-part?)

x)

(h> {imaginary-part?)

y)

^*H <s> (pf»«=*)

(rules z
'

(s> {complex: {real: =rz) {imaginary, siz))

{complex:

{real: (x + rz))

{imaginary, (y + iz))))

{elte

{complex:

{real: (x + (real-part z)))

{imaginary, (y (imaginary-part z)))))))

(=> {time* bz)

(rules z

(s> (complex: {real: =rz) {imaginary. =iz))

{complex:

{real: ((x * rz) - (y * iz)))

{imaginary, ((x * iz) + (y * rz))))

{elte

{complex:

{real: ((x * (real-part z)) - (y * (imaginary-part z))))

{imaginary, ((x * (imaginary-part z)) (y * (real-part z))))))))))))

Note that PLASMA is ideally suited for the above kind of optimization by in-line substitution

because identifiers in PLASMA (unlike many other languages) are completely transparent. An

m~\ occurrence of identifier in PLASMA serves only to name the actor to which it is bound. In-line

substitution is not always valid in languages like LISP 16 because of the SET primitive in the language.

The presence of a primitive like SET (and other similar primitives in other LISP-like languages) makes

optimization much more difficult.
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